A comparison of the bagging and the boosting methods using the decision trees classifiers

نویسندگان

  • Kristína Machova
  • Miroslav Puszta
  • Frantisek Barcák
  • Peter Bednár
چکیده

In this paper we present an improvement of the precision of classification algorithm results. Two various approaches are known: bagging and boosting. This paper describes a set of experiments with bagging and boosting methods. Our use of these methods aims at classification algorithms generating decision trees. Results of performance tests focused on the use of the bagging and boosting methods in connection with binary decision trees are presented. The minimum number of decision trees, which enables an improvement of the classification performed by the bagging and boosting methods, was found. The tests were carried out using the Reuter’s 21578 collection of documents as well as documents from an Internet portal of TV broadcasting company Markíza. The comparison of our results on testing the bagging and boosting algorithms is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran

An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...

متن کامل

An Empirical Comparison of Pruning Methods for Ensemble Classifiers

Many researchers have shown that ensemble methods such as Boosting and Bagging improve the accuracy of classification. Boosting and Bagging perform well with unstable learning algorithms such as neural networks or decision trees. Pruning decision tree classifiers is intended to make trees simpler and more comprehensible and avoid over-fitting. However it is known that pruning individual classif...

متن کامل

Popular Ensemble Methods: An Empirical Study

An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund & Schapire, 1996; Schapire, 1990) are two relatively new...

متن کامل

oosting, a C4.5

Breiman’s bagging and Freund and Schapire’s boosting are recent methods for improving the predictive power of classifier learning systems. Both form a set of classifiers that are combined by voting, bagging by generating replicated bootstrap samples of the data, and boosting by adjusting the weights of training instances. This paper reports results of applying both techniques to a system that l...

متن کامل

Irical Evaluation of Agging Ad

An ensemble consists of a set of independently trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble as a whole is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman 1996a) and Boosting (F’reund & Schapire 1996) are two relatively new but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Sci. Inf. Syst.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2006